NC STATE UNIVERSITY

Developing indicators of Carbon Dioxide flux from Arctic wetlands

Megan Amanatides¹ & Erin Lee Hestir¹

¹NC State University, Raleigh, USA | Department of Marine, Earth and Atmospheric Science | Center for Geospatial Analytics

Introduction

Historically, Arctic wetlands have acted as strong sinks for atmospheric CO₂; however, it is uncertain how carbon in these ecosystems will respond to climate change [ACIA, 2004; Schuur et al., 2015]. Understanding changes in CO₂ flux and its potential drivers is a crucial step towards determining how Arctic wetland carbon balance will change with climate change.

Warmer and drier Arctic conditions have the potential to diminish the productivity of Arctic wetland vegetation.

 CO_2 flux is the exchange of CO_2 between the ecosystem and the atmosphere.

This study synthesizes micrometeorological data and satellite observations from 10 sites across the Arctic to investigate:

- 1. How is CO₂ flux changing in Arctic wetlands
- 2. What variables best indicate variations in CO₂ flux

We hypothesize that with climate change, Arctic wetlands will become a greater sink for CO₂ because climate-induced changes that promote CO₂ sink activity (e.g. vegetation growth) will outweigh those that promote CO₂ source activity (e.g. increased decomposition).

Contact: mmamanat@ncsu.edu

The CO₂ balance of Arctic wetlands will be determined by which process outweighs the other.

Methods

Results

Study sites

Each study site (below) is equipped with a micrometeorological flux tower (left) which takes near continuous measurements of CO_2 flux and meteorological variables. Gray shading represents permafrost extent: continuous (90-100%), discontinuous (50-90%, sporadic (10-50%), and isolated (0-10%).

CO₂ balance and trends

Annual summer CO₂ balance at each site. The size of the point denotes the strength of the CO_2 sink. Together, these ten sites sequester over 200 metric tons of carbon each summer; that's equivalent to the amount released by burning 25,000 gallons of fuel.

Site Site Site

Currently, Arctic wetlands are an annual summer CO₂ sink, although they are not storing as much carbon as many mixed forest ecosystems are around the globe.

Data

Summer (May – September) data was obtained from micrometeorological flux towers at each site:

- Air temperature
- Evapotranspiration (ET)
- Vapor pressure deficit (VPD)
- Solar radiation
- Wind speed
- Wind direction

Landscape variables was calculated from from Landsat (4-5, 7, 8) surface reflectance data:

- Percent cover for snow, water, and land
- Normalized difference vegetation index (NDVI)
- Normalized difference moisture index (NDMI)

CO_2 flux time series

Average percent cover during the summer at each site. Percent cover was found using a combination of broadband spectral indices.

Indicators of CO₂ flux

A trend analysis was performed at 4 of 10 sites that had \geq 7 years of data. The nonparametric Mann-Kendall test for trend and Sen's slope were calculated [Sen, 1968; *Hirsh et al.*, 1982]. The size of the point represents the magnitude of the trend.

Variable importance was assessed using a conditional inference forest [Breiman, 2001]. This analysis considered CO_2 flux as a function of both meteorological variables and landscape variables at 6 of 10 sites with sufficient flux tower and satellite observations.

CO₂ Balance and trends

Conclusions

The effects of climate change are not uniform across Arctic wetlands

• In some areas sink activity (vegetation growth) outweighs source activity (decomposition) • In others, source activity outweighs sink activity

Indicators of CO₂ flux

- CO₂ flux is most explained by changes in vegetation
- There was strong site-to-site variability

Acknowledgements

We acknowledge two AmeriFlux sites for their data: US-Brw & US-Ivo, five Euroflux sites for their data: NO-Adv, FI-Kaa, FI-Lom, DK-NuF & DK-ZaF, one FLUXNET site for its data: US-Atq, and one AON site for its data: US-Ics. Landsat surface reflectance data were retrieved from EarthExplorer.

References

ACIA (2004). Impacts of a Warming Arctic. Arctic Climate Impact Assessment – Synthesis Report, Cambridge Univ. Press, NY, NY. Breiman, L. (2001). Random Forests. Machine Learning, 45, 5-32.

Hirsch, R. M. et al. (1982). Techniques of trend analysis for monthly water quality data, Water Resources Research 18(1):107-121.

Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall's tau. Journal of the American Statistical Assoc., 63, 1379-1389 Schuur et al. (2015). Climate change and the permafrost carbon feedback, *Nat.*, 520, 171-179.